Abstract

Autosomal dominant polycystic kidney disease (ADPKD), one of the common inherited disorders in humans, is characterized by the development and enlargement of renal cysts, often leading to end-stage renal disease (ESRD). In this study, Iranian ADPKD families were subjected to high-throughput DNA sequencing to find potential causative variants facilitating the way toward risk assessment and targeted therapy. Our protocol was based on the targeted next generation sequencing (NGS) panel previously developed in our center comprising 12 genes involved in PKD. This panel has been applied to investigate the genetic causes of 32 patients with a clinical suspicion of ADPKD. We identified a total of 31 variants for 32 individuals, two of which were each detected in two individuals. Twenty-seven out of 31 detected variants were interpreted as pathogenic/likely pathogenic and the remaining 4 of uncertain significance with a molecular diagnostic success rate of 87.5%. Among these variants, 25 PKD1/2 pathogenic/likely pathogenic variants were detected in 32 index patients (78.1%), and variants of uncertain significance in four individuals (12.5% in PKD1/2). The majority of variants was identified in PKD1 (74.2%). Autosomal recessive PKD was identified in one patient, indicating the similarities between recessive and dominant PKD. In concordance with earlier studies, this biallelic PKD1 variant, p.Arg3277Cys, leads to rapidly progressive and severe disease with very early-onset ADPKD. Our findings suggest that targeted gene panel sequencing is expected to be the method of choice to improve diagnostic and prognostic accuracy in PKD patients with heterogeneity in genetic background.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call