Abstract

BackgroundResistance to chemotherapy is the most common cause of treatment failure in acute myeloid leukemia (AML) and the drug efflux pump ABCB1 is a critical mediator. Recent studies have identified promoter translocations as common drivers of high ABCB1 expression in recurrent, chemotherapy-treated high-grade serous ovarian cancer (HGSC) and breast cancer. These fusions place ABCB1 under the control of a strong promoter while leaving its open reading frame intact. The mechanisms controlling high ABCB1 expression in AML are largely unknown. We therefore established an experimental system and analysis pipeline to determine whether promoter translocations account for high ABCB1 expression in cases of relapsed human AML.MethodsThe human AML cell line THP-1 was used to create a model of chemotherapy resistance in which ABCB1 expression was driven by a promoter fusion. The THP-1 model was used to establish a targeted nanopore long-read sequencing approach that was then applied to cases of ABCB1high HGSC and AML. H3K27Ac ChIP sequencing was used to assess the activity of native promoters in cases of ABCB1high AML.ResultsProlonged in vitro daunorubicin exposure induced activating ABCB1 promoter translocations in human THP-1 AML cells, similar to those recently described in recurrent high-grade serous ovarian and breast cancers. Targeted nanopore sequencing proved an efficient method for identifying ABCB1 structural variants in THP-1 AML cells and HGSC; the promoter translocations identified in HGSC were both previously described and novel. In contrast, activating ABCB1 promoter translocations were not identified in ABCB1high AML; instead H3K27Ac ChIP sequencing demonstrated active native promoters in all cases studied.ConclusionsDespite frequent high level expression of ABCB1 in relapsed primary AML we found no evidence of ABCB1 translocations and instead confirmed high-level activity of native ABCB1 promoters, consistent with endogenous regulation.

Highlights

  • Resistance to chemotherapy is the most common cause of treatment failure in acute myeloid leukemia (AML) and the drug efflux pump ABC sub-family B member 1 (ABCB1) is a critical mediator

  • ABCB1 promoter translocations have been described in several solid malignancy cancer cell lines but not in human myeloid leukemia cell lines [14]

  • RNA sequencing and confirmatory quantitative PCR indicated that ABCB1, which was not expressed in THP-1 cells, was one of the most highly expressed genes in THP-1_R cells

Read more

Summary

Introduction

Resistance to chemotherapy is the most common cause of treatment failure in acute myeloid leukemia (AML) and the drug efflux pump ABCB1 is a critical mediator. Recent studies have identified promoter translocations as common drivers of high ABCB1 expression in recurrent, chemotherapy-treated high-grade serous ovarian cancer (HGSC) and breast cancer. These fusions place ABCB1 under the control of a strong promoter while leaving its open reading frame intact. The mechanisms controlling high ABCB1 expression in AML are largely unknown. Recent studies have shown promoter translocations to be common drivers of ABCB1 expression in recurrent, chemotherapy-treated high-grade serous ovarian (HGSC) and breast cancer [2, 3]. We established an experimental system and analysis pipeline to determine whether promoter translocations account for high ABCB1 expression in cases of relapsed human AML

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call