Abstract

The cell nucleus is a crowded volume in which the concentration of macromolecules is high. These macromolecules sequester most of the water molecules and ions which, together, are very important for stabilization and folding of proteins and nucleic acids. To better understand how the localization and quantity of water and ions vary with nuclear activity, it is necessary to study them simultaneously by using newly developed cell imaging approaches. Some years ago, we showed that dark-field cryo-Scanning Transmission Electron Microscopy (cryo-STEM) allows quantification of the mass percentages of water, dry matter, and elements (among which are ions) in freeze-dried ultrathin sections. To overcome the difficulty of clearly identifying nuclear subcompartments imaged by STEM in ultrathin cryo-sections, we developed a new cryo correlative light and STEM imaging procedure. This combines fluorescence imaging of nuclear GFP-tagged proteins to identify, within cryo ultrathin sections, regions of interest which are then analyzed by STEM for quantification of water and identification and quantification of ions. In this chapter we describe the new setup we have developed to perform this cryo-correlative light and STEM imaging approach, which allows a targeted nano analysis of water and ions in nuclear compartments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.