Abstract

Grain Width and Weight 2 (GW2) is an E3-ubiquitin ligase-encoding gene that negatively regulates the size and weight of the grain in cereal species. Therefore, disabling GW2 gene activity was suggested for enhancing crop productivity. We show here that CRISPR/Cas-mediated mutagenesis of the barley GW2.1 homologue results in the development of elongated grains and increased protein content. At the same time, GW2.1 loss of function induces a significant grain yield deficit caused by reduced spike numbers and low grain setting. We also show that the converse effect caused by GW2.1 absence on crop yield and protein content is largely independent of cultivation conditions. These findings indicate that the barley GW2.1 gene is necessary for the optimization between yield and grain traits. Altogether, our data show that the loss of GW2.1 gene activity in barley is associated with pleiotropic effects negatively affecting the development of generative organs and consequently the grain production. Our findings contribute to the better understanding of grain development and the utilisation of GW2.1 control in quantitative and qualitative genetic improvement of barley.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.