Abstract

Root metaxylem vessels are responsible for axial water transport and contribute to hydraulic architecture. Variation in metaxylem vessel size and number can impact drought tolerance in crop plants, including rice, a crop that is particularly sensitive to drought. Identifying and validating candidate genes for metaxylem development would aid breeding efforts for improved varieties for drought tolerance. We identified three transcription factor candidate genes that potentially regulate metaxylem vessel size and number in rice based on orthologous annotations, published expression data, and available root and drought‐related QTL data. Single gene knockout mutants were generated for each candidate using CRISPR‐Cas9 genome editing. Root metaxylem vessel area and number were analyzed in 6‐week‐old knockout mutants and wild‐type plants under well‐watered and drought conditions in the greenhouse. Compared with wild type, LONESOME HIGHWAY (OsLHW) mutants had fewer, smaller metaxylem vessels in shallow roots and more, larger vessels in deep roots in drought conditions, indicating that OsLHW may be a repressor of drought‐induced metaxylem plasticity. The AUXIN RESPONSE FACTOR 15 mutants showed fewer but larger metaxylem vessel area in well‐watered conditions, but phenotypes were inconsistent under drought treatment. ORYZA SATIVA HOMEBOX 6 (OSH6) mutants had fewer, smaller metaxylem vessels in well‐watered conditions with greater effects on xylem number than size. OSH6 mutants had larger shoots and more, deeper roots than the wild type in well‐watered conditions, but there were no differences in performance under drought between mutants and wild type. Though these candidate gene mutants did not exhibit large phenotypic effects, the identification and investigation of candidate genes related to metaxylem traits in rice deepen our understanding of metaxylem development and are needed to facilitate incorporation of favorable alleles into breeding populations to improve drought stress tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.