Abstract
Evidence suggests that GABA and CCK have opposite roles in the regulation of anxiety. The aim of the present work was to study diazepam-induced anxiolytic-like action and impairment of motor co-ordination, and the parameters of benzodiazepine receptors in mice lacking CCK2 receptors. The action of diazepam (0.5-3 mg/kg i.p.) was studied in the elevated plus-maze model of anxiety and rotarod test using mice lacking CCK2 receptors. The parameters of benzodiazepine receptors were analysed using [3H]-flunitrazepam binding. In the plus-maze test, the exploratory activity of the homozygous (-/-) mice was significantly higher compared to their wild-type (+/+) littermates. However, the wild-type (+/+) mice displayed higher sensitivity to the anxiolytic-like action of diazepam. Even the lowest dose of diazepam (0.5 mg/kg) induced a significant increase of open arm entries in the wild-type (+/+) mice. A similar effect in the homozygous (-/-) mice was established after the administration of diazepam 1 mg/kg. The highest dose of diazepam (3 mg/kg) caused a prominent anxiolytic-like effect in the wild-type (+/+) mice, whereas in the homozygous (-/-) animals suppression of locomotor activity was evident. The performance of the homozygous (-/-) mice in the rotarod test did not differ from that of the wild-type (+/+) littermates. However, a difference between the wild-type (+/+) and homozygous (-/-) animals became evident after treatment with diazepam. Diazepam (0.5 and 3 mg/kg) induced significantly stronger impairment of motor co-ordination in the homozygous (-/-) mice compared to their wild-type (+/+) littermates. The density of benzodiazepine binding sites was increased in the cerebellum, but not in the cerebral cortex and hippocampus, of the homozygous (-/-) mice. Female mice lacking CCK2 receptors are less anxious than their wild-type (+/+) littermates. The reduced anxiety in homozygous (-/-) mice probably explains why the administration of a higher dose of diazepam is necessary to induce an anxiolytic-like action in these animals. The highest dose of diazepam (3 mg/kg) induced significantly stronger suppression of locomotor activity and impairment of motor co-ordination in the homozygous (-/-) mice compared to the wild-type (+/+) littermates. The increase in the action of diazepam is probably related to the elevated density of benzodiazepine receptors in the cerebellum of homozygous (-/-) mice. The present study seems to be in favour of increased tone of the GABAergic system in mice without CCK2 receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.