Abstract

Neuropeptide cholecystokinin (CCK) regulates the adaptation of rodents in the novel environment. In the present study we analysed the behavioural changes induced by the individual housing in mice, lacking CCK(2) receptors. The wild-type (+/+) and homozygous (-/-) CCK(2) receptor deficient mice of both gender were used throughout the study. The weight gain during the 21-day isolation period and changes in the locomotor activity following the social separation were measured. The elevated plus-maze and resident/intruder tests were also performed to test alterations in the emotional behaviour. Social isolation induced locomotor hyperactivity, reduced weight gain and increased aggressiveness in the wild-type (+/+) and homozygous (-/-) male mice. In the wild-type (+/+) female mice the significant reduction of exploratory activity in the plus-maze was evident. By contrast, in female mice, lacking CCK(2) receptors, the exploration of the plus-maze was not significantly affected by the individual housing. This finding demonstrates that the social isolation does not cause anxiety-like state in the CCK(2) receptor deficient mice. Moreover, the targeted invalidation of CCK(2) receptors increased in male mice the affinity of dopamine D(2) receptors in the sub-cortical structures, whereas in female mice the increased affinity of 5-hydroxytryptamine(2) (5-HT(2)) receptors in the frontal cortex was established. The increased affinity of 5-HT(2) receptors is probably the compensatory change to the lack of CCK(2) receptors in female mice and probably reflects the reduced sensitivity of these animals to the anxiogenic manipulations. In conclusion, targeted mutation of CCK(2) receptors selectively antagonised the behavioural changes induced by the individual housing in females, but not in male mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.