Abstract
Targeted metabolomics and flavouromics combined with relative odor activity value were performed to explore the effect of degradation and oxidation of matrix mediated by pH on the formation of characteristic volatiles in preserved egg yolk (PEY) during pickling. It was found that the oxidation of proteins and lipids in PEY induced by pH sequentially occurred in early and later periods, and degradation both mainly occurred in early stage. Moreover, 1-octen-3-one, heptanal, trimethylamine, etc., compounds and 5-HETrE, proline, etc., components were confirmed as up-regulated characteristic volatiles and differential metabolites in PEY during pickling. The formation of octanal-M/D and benzeneacetaldehyde-M was attributed to β-oxidation of hydroxyeicosapentaenoic acid and L-isoleucine catalyzed by strong alkali at early period based on correlation network between them, respectively. Meanwhile, the generation of 1-octen-3-one-M/D mainly depended on L-serine and could be promoted by phosphatidylcholines oxidation. At later stage, the formation of heptanal-M/D was primarily attributed to phosphatidylethanolamines oxidation induced by alkali, and the enrichment of heptanal-M/D and nonanal were both enhanced by oxidized lipids. Lastly, trimethylamine was derived from L-lysine under alkaline conditions and promoted by protein oxidation during the whole process. This manuscript provided insight into the differential contribution of oxidation and degradation from matrix regulated by exogenous factors on the formation pathway for characteristic volatiles in foods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.