Abstract

Microfluidic-based single cells analysis has been of great interest in recent years, promising disease diagnosis and personalized medicine. Current technologies are challenging in bioselectively isolating specific single cells from complex matrices. Herein, a novel microfluidic platform integrated with cell-recognizable aptamer-encoded microwells was specifically developed to isolate single tumor cells with satisfied single-cell occupancy and unique bioselectivity. In this work, the designed microwell-structures enable us to encourage strong 3D local topographic interactions of the target cell surface with biomolecules and regulate the single-cell resolution. Under the optimized size of microwells, the single-cell occupancy was significantly enhanced from 0.5% to 88.2% through the introduction of the aptamer. Analysis of the target cells was directly performed in short time periods (<5.0 min) with small volumes (4.5 μL). Importantly, such an aptamer-enabled microfluidic device shows an excellent selectivity for target single cells isolation compared with three control cells. Subsequently, targeted isolation and analysis of single tumor cells were demonstrated by using artificial complex cell samples at simulated conditions, and various cellular carboxylesterases were studied by time-course measurements of cellular fluorescence kinetics at individual-cell level. Thus, our technique will open up a new opportunity in single-cell level-based disease diagnosis and personalize medicine screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.