Abstract

Despite advances in experimental stroke models, confounding factors such as anesthetics used during stroke induction remain. Furthermore, imaging of blood flow during stroke is not routinely done. We take advantage of in vivo bihemispheric transcranial windows for longitudinal mesoscopic imaging of cortical function to establish a protocol for focal ischemic stroke induction in target brain regions using photothrombosis in awake head-fixed mice. Our protocol does not require any surgical steps at the time of stroke induction or anesthetics during either head fixation or photoactivation. In addition, we performed laser speckle contrast imaging and wide-field calcium imaging to reveal the effect of cortical spreading ischemic depolarization after stroke in both anesthetized and awake animals over a spatial scale encompassing both hemispheres. With our combined approach, we observed ischemic depolarizing waves (3 to [Formula: see text]) propagating across the cortex 1 to 5min after stroke induction in genetically encoded calcium indicator mice. Measures of blood flow by laser speckle were correlated with neurological impairment and lesion volume, suggesting a metric for reducing experimental variability. The ability to follow brain dynamics immediately after stroke as well as during recovery may provide a valuable guide to develop activity-dependent therapeutic interventions to be performed shortly after stroke induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.