Abstract

Complete (R0) resection is the dominant prognostic factor for survival across solid tumor types. Achieving adequate tumor clearance with appropriate margins is particularly difficult in nonpalpable tumors or in situ disease. Previous methods to address this problem have proven time consumptive, impractical, or ineffective. To assess the capability of intraoperative molecular imaging (IMI), a novel technology using a fluorescent tracer targeted to malignant cells, to localize visually occult, nonpalpable tumors and quantify margin distances during resection. This nonrandomized open-label trial of IMI using a folate receptor-targeted fluorescent tracer enrolled patients between May 2017 and June 2020 at a single referral center. Eligible patients included those with a small (T1) lung lesion suspicious for malignant neoplasms and with radiographic features suggestive of a nonpalpable lesion. Patients were preoperatively infused with a folate receptor-targeted near-infrared tracer. Intraoperatively, surgeons used thoracoscopic visualization and palpation to identify lesions. IMI was performed to detect the lesion in situ, and lesions were imaged ex vivo. Margins were assessed by IMI before comparison with those reported on final histopathologic analysis. The main outcomes were whether IMI could (1) localize nonpalpable lung lesions in situ and (2) quantify margin distance with comparison with final pathology as the criterion standard. Patient demographic information and lesion characteristics were prospectively recorded. Of 40 patients, 26 (65%) were female, and the median (interquartile range) age was 66.5 (62-72) years. Conventional surgical methods localized 22 of 40 lesions (55%), while IMI localized 36 of 40 (90%). Of 18 nonpalpable lesions, 15 (83.3%) were identified by IMI. Both palpable and nonpalpable lesions demonstrated mean signal-to-background ratio more than 2. An IMI margin was able to be calculated for 39 of 40 patients (95%). IMI margins were nearly identical to margins reported on final pathology (R2 = 0.9593), with median (interquartile range) difference of 1.3 (0.7-2.0) mm. IMI detected 2 margins in nonpalpable tumors that were clinically unacceptable and would have had a high probability of recurrence. To our knowledge, this study presents the first clinical use of IMI for nonpalpable tumors and provides proof of principle for the utility of IMI across the field of surgical oncology in identifying occult disease and tumor-positive margins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call