Abstract

BackgroundTargeted optical imaging offers a noninvasive and accurate method for the early detection of gastrointestinal tumors, especially for flat appearances. In our previous study, a sequence of SNFYMPL (SNF) was identified as a specific peptide to bind to esophageal carcinoma using phage-display technology. This study aimed to evaluate the tumor-targeting efficacy of Cy5.5-conjugated SNF probe for imaging of esophageal carcinoma in vitro and in vivo.MethodsThe SNF-Cy5.5 probe was synthesized and then identified using High Performance Liquid Chromatography (HPLC) and mass spectrometry (MS). Confocal fluorescence imaging and Flow cytometry analysis were performed to evaluate the binding specificity and the receptor binding affinity of SNF-Cy5.5 to OE33. In vivo imaging was performed to evaluate the targeting ability of SNF-Cy5.5 to esophageal carcinoma.ResultsThe confocal imaging and flow cytometry analysis showed that SNF-Cy5.5 bound specifically to the plasma membrane of OE33 cells with a high affinity. In vivo, for non-block group, SNF-Cy5.5 probe exhibited rapid OE33 tumor targeting during 24 h p.i. and excellent tumor-to-background contrast at 2 h p.i. For the block group, SNF-Cy5.5 was not observed in the mice after 4 h p.i. Ex vivo imaging also revealed that a higher fluorescent signal intensity value of the tumors was clearly observed in the non-block group than that in the block group (2.6 ± 0.32 × 109 vs. 0.8 ± 0.08 × 109, p < 0.05).ConclusionsSNF-Cy5.5 was synthesized and characterized with a high efficiency and purity. The higher affinity, specificity, and tumor targeting efficacy of SNF-Cy5.5 were confirmed by in vitro and in vivo tests. SNF-Cy5.5 is a promising optical probe for the imaging of esophageal adenocarcinoma.

Highlights

  • Targeted optical imaging offers a noninvasive and accurate method for the early detection of gastrointestinal tumors, especially for flat appearances

  • Previous studies have revealed that NIR fluorescence (NIRF) imaging has been used to visualize or measure various biological closely connected with diseases’ process in the cellular or molecular level [4,5,6,7,8], which provided more information for us to apply this promising technique to early detection of neoplasm originated from hollow organs

  • We identified a seven amino acids— peptide sequence, which could bind to human esophageal dysplasia or adenocarcinoma [11]

Read more

Summary

Introduction

Targeted optical imaging offers a noninvasive and accurate method for the early detection of gastrointestinal tumors, especially for flat appearances. This study aimed to evaluate the tumor-targeting efficacy of Cy5.5-conjugated SNF probe for imaging of esophageal carcinoma in vitro and in vivo. Kang et al BMC Gastroenterol (2021) 21:260 imaging is prone to receive false signals from self-absorption and scattering of humans’ tissues. Another limitation is the fact that flat lesions are hardly detected due to non-targeted imaging. Previous studies have revealed that NIR fluorescence (NIRF) imaging has been used to visualize or measure various biological closely connected with diseases’ process in the cellular or molecular level [4,5,6,7,8], which provided more information for us to apply this promising technique to early detection of neoplasm originated from hollow organs. Short peptides had the following advantages: easier to be synthesized and modified; rapider blood clearance; increased permeability; lower toxicity and lower immunogenicity [9, 10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call