Abstract

X-ray based computed tomography (CT) is among the most convenient imaging/diagnostic tools in hospitals today in terms of availability, efficiency, and cost. However, in contrast to magnetic resonance imaging (MRI) and various nuclear medicine imaging modalities, CT is not considered a molecular imaging modality since targeted and molecularly specific contrast agents have not yet been developed. Here we describe a targeted molecular imaging platform that enables, for the first time, cancer detection at the cellular and molecular level with standard clinical CT. The method is based on gold nanoprobes that selectively and sensitively target tumor selective antigens while inducing distinct contrast in CT imaging (increased X-ray attenuation). We present an in vitro proof of principle demonstration for head and neck cancer, showing that the attenuation coefficient for the molecularly targeted cells is over 5 times higher than for identical but untargeted cancer cells or for normal cells. We expect this novel imaging tool to lead to significant improvements in cancer therapy due to earlier detection, accurate staging, and microtumor identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.