Abstract

The vast number of unknown phage-encoded ORFan genes and limited insights into the genome organization of phages illustrate the need for efficient genome engineering tools to study bacteriophage genes in their natural context. In addition, there is an application-driven desire to alter phage properties, which is hampered by time constraints for phage genome engineering in the bacterial host. We here describe an optimized CRISPR-Cas3 system in Pseudomonas for straightforward editing of the genome of virulent bacteriophages. The two-vector system combines a broad host range CRISPR-Cas3 targeting plasmid with a SEVA plasmid for homologous directed repair, which enables the creation of clean deletions, insertions, or substitutions in the phage genome within a week. After creating the two plasmids separately, a co-transformation to P. aeruginosa cells is performed. A subsequent infection with the targeted phage allows the CRISPR-Cas3 system to cut the DNA specifically and facilitate or select for homologous recombination. This system has also been successfully applied for P. aeruginosa and Pseudomonas putida genome engineering. The method is straightforward, efficient, and universal, enabling to extrapolate the system to other phage-host pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.