Abstract
Conventional tools induce mutations randomly throughout the cotton genome—making breeding difficult and challenging. During the last decade, progress has been made to edit the gene of interest in a very precise manner. Targeted genome engineering with engineered nucleases (ENs) specifically zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided nucleases (e.g., Cas9) has been described as a “game-changing technology” for diverse fields as human genetics and plant biotechnology. In eukaryotic systems, ENs create double-strand breaks (DSBs) at the targeted DNA sequence which are repaired by nonhomologous end joining (NHEJ) or homology-directed recombination (HDR) mechanisms. ENs have been used successfully for targeted mutagenesis, gene knockout, and multisite genome editing (GenEd) in model plants and crop plants such as cotton, rice, and wheat. Recently, cotton genome has also been edited for targeted mutagenesis through CRISPR/Cas for improved lateral root formation. In addition, an efficient and fast method has been developed to evaluate guide RNAs transiently in cotton. The targeted disruption of undesirable genes or metabolic pathway can be achieved to increase quality of cotton. Undesirable metabolites like gossypol in cottonseed can be targeted efficiently using ENs for seed-specific low-gossypol cotton. Moreover, ENs are also helpful in gene stacking for herbicide resistance, insect resistance, and abiotic stress tolerance.
Highlights
Cotton is an important source of natural fiber and has been playing a major role in economy and social structure of several countries
We provide a picture of the use of genome editing (GenEd) tools for genetic improvement of cotton and other crop plants
homologydirected recombination (HDR)-based gene replacement has been achieved successfully by replacing a 7-kb fragment flanked by two zinc-finger nucleases (ZFNs) cutting sites with a 4-kb donor cassette, which integrates genes of kanamycin resistance and red fluorescent protein (RFP) [42]
Summary
ZZuullqquurrnnaaiinn KKhhaann,, SSuullttaann HHaabbiibbuullllaahh KKhhaann,, Muhammad Salman Mubarik and Aftab Ahmad.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.