Abstract

A methodology was developed to construct any desired chromosomal mutation in the gene cluster that encodes the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2). A positive selection marker (resistance gene) is first introduced by double crossing-over into the chromosomal site of interest by use of an unstable delivery plasmid. This marker is subsequently replaced by the desired mutant allele via a second high-frequency double recombination event. The technology has been used to: (i) explore the significance of translational coupling between two adjacent PKS genes; (ii) prove that the acyl carrier protein (ACP) encoded by a gene in the cluster is necessary for the function of the actinorhodin PKS; (iii) provide genetic evidence supporting the hypothesis that serine 42 is the site of phosphopantetheinylation in the ACP of the actinorhodin PKS; and (iv) demonstrate that this ACP can be replaced by a Saccharopolyspora fatty acid synthase ACP to generate an active hybrid PKS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.