Abstract

Genome modifications in microalgae have emerged as a crucial and indispensable tool for research in fundamental and applied biology. In particular, CRISPR/Cas9 has gained significant recognition as a highly effective method for genome engineering in these photosynthetic organisms, enabling the targeted induction of mutations in specific regions of the genome. Here, we present a comprehensive protocol for generating knock-out mutants in the model diatom Phaeodactylum tricornutum using CRISPR/Cas9 by both biolistic transformation and bacterial conjugation. Our protocol outlines the step-by-step procedures and experimental conditions required to achieve successful genome editing, including the design and construction of guide RNAs, the delivery of CRISPR/Cas9 components into the algae cells, and the selection of the generated knockout mutants. Through the implementation of this protocol, researchers can harness the potential of CRISPR/Cas9 in P. tricornutum to advance the understanding of diatom biology and explore their potential applications in various fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.