Abstract
Several strategies have been shown to improve the transfection efficiency of polyethylenimine (PEI) as a nonviral gene delivery vector. In the present study, a nucleic acid aptamer specific for protein tyrosine kinase 7 (PTK7) surface marker, sgc-8c, was conjugated electrostatically to pre-formed 10-kDa PEI/plasmid DNA polyplexes, and the ability of the conjugate to transfer genetic material was evaluated in MOLT-4 human acute lymphoblastic leukemia T-cells, which express PTK7 on their surface. Polyplexes (plasmid DNA-vector conjugates), prepared using PEI-sgc-8c conjugate and pCMVLuc as a reporter gene, were characterized in terms of particle size, surface charge and the extent of DNA condensation. Polyplexes were also evaluated for cytotoxicity using the MTS colorimetric assay, as well as for transfection efficiency in MOLT-4 cells, and compared with the results obtained in U266 cells, which lack cell surface PTK7. Relative to pDNA/PEI, the size of pDNA/PEI/sgc-8c aptamer polyplexes increased with decreasing zeta potential. In MOLT-4 cells, pDNA/PEI/sgc-8c aptamer polyplexes exhibited an almost six- to eight-fold increase in transfection efficiency compared to that of pDNA/PEI polyplex, indicating that conjugation of sgc-8c aptamer to pre-formed 10-kDa PEI/plasmid DNA polyplexes achieved effective targeting without covalent attachment, whereas receptor-mediated conducted transfection was confirmed by performing a competitive transfection experiment and a cellular uptake study. The results of the present study provide an example of the usefulness of a nucleic acid aptamer in the form of noncovalent, electrostatic conjugates as an approach for enhancing the transfection efficiency of a polycation vector such as PEI without significant induced cytotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.