Abstract

Dystrophic epidermolysis bullosa is a group of orphan genetic skin diseases dominantly or recessively inherited, caused by mutations in COL7A1 encoding type VII collagen, which forms anchoring fibrils. Individuals with recessive dystrophic epidermolysis bullosa develop severe skin and mucosal blistering after mild trauma. The exon skipping strategy consists of modulating splicing of a pre-mRNA to induce skipping of a mutated exon. We have targeted COL7A1 exons 73 and 80, which carry recurrent mutations and whose excision preserves the open reading frame. We first showed the dispensability of these exons for type VII collagen function invivo. We then showed that transfection of primary recessive dystrophic epidermolysis bullosa keratinocytes and fibroblasts carrying null mutations in exon 73 and/or 80, with 2'-O-methyl antisense oligoribonucleotides, led to efficient exvivo skipping of these exons (50-95%) and resulted in a significant level (upto 36%) of type VII collagen re-expression. Finally, one or two subcutaneous injections of antisense oligoribonucleotides at doses ranging from 400 μg up to 1 mg restored type VII collagen expression and anchoring fibril formation invivo in a xenograft model of recessive dystrophic epidermolysis bullosa skin equivalent. This work provides a proof of principle for the treatment of patients with recessive dystrophic epidermolysis bullosa by exon skipping using subcutaneous administration of antisense oligoribonucleotides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call