Abstract

Defining the multi-faceted roles of prostaglandins has been facilitated by studying mice with manipulated expression of the two enzymes encoding cyclooxygenase (COX) via gene targeting, with either knocked down expression of COX-1 or COX-2, a knocked-in COX-2 active site mutation and exchange of COX isoforms by insertion of a cassette encoding COX-1 into the COX-2 (Ptgs2) gene to create COX-1>COX-2 mice. Here, we sought to extend these studies by creating a new induced mutant strain with manipulated COX expression. We carried out gene targeting at the Ptgs1 locus to knock-in an expression cassette encoding COX-2 under Ptgs1 regulatory elements in a manner analogous used in COX-1>COX-2 targeting. While successful gene targeting at the Ptgs1 locus was achieved, the strategy did not yield a “basal” increase of COX-2 under Ptgs1 gene regulatory control in various cells and tissues from COX-2>COX-1 mice but rather resulted in a Ptgs1 null allele. Possible explanations as to why this strategy was unsuccessful include non-functionality of the hybrid signal peptide and aberrant transcript processing. Since a similar strategy had previously worked (i.e. COX-1 cDNA knocked-in to the Ptgs2 locus; COX-1>COX-2 mice) interpretations of our findings on murine COX biology and gene targeting are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.