Abstract

Antibodies labeled with both a near-infrared fluorescent dye and a radionuclide can be used for tumor-targeted intraoperative dual-modality imaging. Girentuximab is a chimeric monoclonal antibody against carbonic anhydrase IX (CAIX), an antigen expressed in 95% of clear cell renal cell carcinoma (ccRCC). This study aimed to assess the feasibility of targeted dual-modality imaging with (111)In-girentuximab-IRDye800CW using ex vivo perfusion of human tumorous kidneys. Seven radical nephrectomy specimens from patients with ccRCC were perfused during 11 to 15 hours with dual-labeled girentuximab and subsequently rinsed during 2.5 to 4 hours with Ringer's Lactate solution. Then, dual-modality imaging was performed on a 5- to 10-mm-thick lamella of the kidney. Fluorescence imaging was performed with a clinical fluorescence camera set-up as applied during image-guided surgery. The distribution of Indium-111 in the slice of tumor tissue was visualized by autoradiography. In two perfusions, an additional dual-labeled control antibody was added to demonstrate specific accumulation of dual-labeled girentuximab in CAIX-expressing tumor tissue. Both radionuclide and fluorescence imaging clearly visualized uptake in tumor tissue and tumor-to-normal tissue borders, as confirmed (immuno)histochemically and by gamma counting. Maximum uptake of girentuximab in tumor tissue was 0.33% of the injected dose per gram (mean, 0.12 %ID/g; range, 0.01-0.33 %ID/g), whereas maximum uptake in the normal kidney tissue was 0.04 %ID/g (mean, 0.02 %ID/g; range, 0.00-0.04 %ID/g). Dual-labeled girentuximab accumulated specifically in ccRCC tissue, indicating the feasibility of dual-modality imaging to detect ccRCC. A clinical study to evaluate intraoperative dual-modality imaging in patients with ccRCC has been initiated. Clin Cancer Res; 22(18); 4634-42. ©2016 AACR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.