Abstract

Background and objectivesPatients with glioblastoma have a high risk of developing venous thromboembolism (VTE). However, the role of underlying genetic risk factors remains largely unknown. Therefore, the aim of this study was to discover whether genetic aberrations in glioblastoma associate with VTE risk. MethodsIn this cohort study, all consecutive patients diagnosed with glioblastoma in two Dutch hospitals between February 2017 and August 2020 were included. Targeted DNA next-generation sequencing of all glioblastomas was performed for diagnostic purposes and included mutational status of the genes ATRX, BRAF, CIC, FUBP1, H3F3A, IDH1, IDH2, PIK3CA, PTEN and TP53 and amplification/gain or deletion of BRAF, CDKN2A, EGFR, NOTCH1 and PTEN. The primary outcome was VTE within three months before glioblastoma diagnosis until two years after. Cumulative incidences were determined using competing risk analysis adjusting for mortality. Univariable Cox regression analysis was performed to determine hazard ratios. ResultsFrom 324 patients with glioblastoma, 25 were diagnosed with VTE. Patients with a CDKN2A deletion had a 12-month adjusted cumulative incidence of VTE of 12.5 % (95%CI: 7.3–19.3) compared with 5.4 % (95%CI: 2.6–9.6) in patients with CDKN2A wildtype (p = 0.020), corresponding to a HR of 2.53 (95%CI: 1.12–5.73, p = 0.026). No significant associations were found between any of the other investigated genes and VTE. ConclusionThis study suggests a potential role for CDKN2A deletion in glioblastoma-related VTE. Therefore, once independently validated, CDKN2A mutational status may be a promising predictor to identify glioblastoma patients at high risk for VTE, who may benefit from thromboprophylaxis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call