Abstract
The purpose of this experiment was to implement and evaluate the effectiveness of a next-generation sequencing-based method for DNA methylation analysis in porcine embryonic samples. Fourteen discrete genomic regions were amplified by PCR using bisulfite-converted genomic DNA derived from day 14 in vivo-derived (IVV) and parthenogenetic (PA) porcine embryos as template DNA. Resulting PCR products were subjected to high-throughput sequencing using the Illumina Genome Analyzer IIx platform. The average depth of sequencing coverage was 14,611 for IVV and 17,068 for PA. Quantitative analysis of the methylation profiles of both input samples for each genomic locus showed distinct differences in methylation profiles between IVV and PA samples for six of the target loci, and subtle differences in four loci. It was concluded that high throughput sequencing technologies can be effectively applied to provide a powerful, cost-effective approach to targeted DNA methylation analysis of embryonic and other reproductive tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.