Abstract

Nijmegen breakage syndrome (NBS) is an autosomal recessive hereditary disease that shares some common defects with ataxia-telangiectasia. The gene product mutated in NBS, named NBS1, is a component of the Mre11 complex that is involved in DNA strand-break repair. To elucidate the physiological roles of NBS1, we disrupted the N-terminal exons of the NBS1 gene in mice. NBS1(m/m) mice are viable, growth retarded and hypersensitive to ionizing radiation (IR). NBS1(m/m) mice exhibit multiple lymphoid developmental defects, and rapidly develop thymic lymphoma. In addition, female NBS1(m/m) mice are sterile due to oogenesis failure. NBS1(m/m) cells are impaired in cellular responses to IR and defective in cellular proliferation. Most systematic and cellular defects identified in NBS1(m/m) mice recapitulate those in NBS patients, and are essentially identical to those observed in Atm(-/-) mice. In contrast to Atm(-/-) mice, spermatogenesis is normal in NBS1(m/m) mice, indicating that distinct roles of ATM have differential requirement for NBS1 activity. Thus, NBS1 and ATM have overlapping and distinct functions in animal development and DNA repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.