Abstract

Ca(2+)-calmodulin (CaM) function was selectively disrupted in a specific subset of growth cones in transgenic Drosophila embryos in which a specific enhancer element drives the expression of the kinesin motor domain fused to a CaM antagonist peptide (kinesin-antagonist or KA, which blocks CaM binding to target proteins) or CaM itself (kinesin-CaM or KC, which acts as a Ca(2+)-binding protein). In both KA and KC mutant embryos, specific growth cones exhibit dosage-dependent stalls in axon extension and errors in axon guidance, including both defects in fasciculation and abnormal crossings of the midline. These results demonstrate an in vivo function for Ca(2+)-CaM signaling in growth cone extension and guidance and suggest that Ca(2+)-CaM may in part regulate specific growth cone decisions, including when to defasciculate and whether or not to cross the midline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call