Abstract

An effective identification and discovery of fungal pigments is very important to illustrate the role of fungal pigments in the life process and conduce to the discovery of new bioactive and edible pigments. The phenotype combined with metabolomic and genomic (PMG) strategy led to the discovery and characterization of three new sorbicillinoid pigments, stasorbicillinoids A-C (1-3), and five known analogues (4-8) from the sponge-derived fungus Stagonospora sp. SYSU-MS7888. Their structures were elucidated by the application of spectroscopic methods (NMR, MS, UV, IR, and ECD) and modified Mosher's method. Compounds 1 and 2 featured novel naphthone nuclei linked by two alkyl side chains possibly undergoing inter- and intramolecular Michael reactions. Compounds 1-8 exhibited potent anti-inflammatory activity with IC50 values in the range of 3.56-22.8 μM. Furthermore, compound 2 inhibited the production of IL-1β, IL-6, and TNF-α in a dose-dependent manner. This study provides an effective strategy to accelerate the discovery of new fungal pigments and further exploration of their potential applications in different fields such as medicine and food industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.