Abstract

In this study, avidin–biotin technology was combined with a multifunctional drug carrier modality i.e. liposomes to achieve an active and versatile targeting approach. The anti-cancer drug doxorubicin (DOX) was modified with direct biotinylation (B-DOX) (Allart et al., 2003), or encapsulated in biotinylated sterically stabilized pH-sensitive liposomes (BL-DOX), and targeted to the lentiviral vector transduced cells expressing an avidin fusion protein on the cell membrane (Lehtolainen et al., 2003; Lesch et al., 2009). The direct biotinylation of doxorubicin improved cell internalization in rat glioma (BT4C) cells expressing avidin fusion protein receptor but cell toxicity was reduced by 78-fold due to impaired nuclear localization. In contrast, liposomal formulations restored the biological activity of the DOX in several cell lines. However, mainly due to uptake via non-specific pathways the active targeting of BL-DOX was negligible in both in vitro and in vivo studies. Active targeting with multifunctional drug carrier systems is challenging and further studies will be needed to optimize the properties of targeted drug carrier and receptor expression systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.