Abstract

Aberrant expression of certain genes and microRNAs (miRNAs) has been shown to drive cancer development and progression, thus the modification of aberrant gene and miRNA expression presents an opportunity for therapeutic targeting. Ectopic modulation of a single dysregulated miRNA has the potential to revert therapeutically unfavorable gene expression in cancer cells by targeting multiple genes simultaneously. Although the use of noncoding RNA-based cancer therapy is a promising approach, the lack of a feasible delivery platform for small noncoding RNAs has hindered the development of this therapeutic modality. Recently, however, there has been an evolution in RNA nanotechnology, in which small noncoding RNA is loaded onto nanoparticles derived from the pRNA-3WJ viral RNA motif of the bacteriophage phi29. Preclinical studies have shown the capacity of this technology to specifically target tumor cells by conjugating these nanoparticles with ligands specific for cancer cells and resulting in the endocytic delivery of siRNA and miRNA inhibitors directly into the cell. Here we provide a systematic review of the various strategies, which have been utilized for miRNA delivery with a specific focus on the preclinical evaluation of promising RNA nanoparticles for glioblastoma (GBM) targeted therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.