Abstract

Chemotherapy plays crucial roles in the clinical treatment of non-small cell lung cancer (NSCLC). Nevertheless, acquired chemoresistance is a common and critical problem that limits the clinical application of chemotherapy. Quercetin (QUE), a natural bioflavonoid, has significant antitumor potential, which has been verified in many drug-resistant cancer cell lines and animal models. Here, we explored whether QUE could reverse the resistance of NSCLC to paclitaxel (PTX)-based therapy. The results of cell viability revealed that QUE could synergistically enhance the cytotoxicity of PTX in A549 and A549/Taxol cells. Furthermore, Akt and ERK phosphorylation had no significant changes in A549/Taxol cells treated with PTX. However, it was significantly inhibited by the combination treatment of QUE and PTX. To improve the antitumor activity of PTX due to its hydrophobicity and eliminate its toxicity, we prepared targeted biodegradable cetuximab chitosan nanoparticles (Cet-CTS NPs) to deliver PTX and QUE using ionic cross-linking technique. The targeted NPs displayed a particle size of 290 nm and sustained release of PTX and QUE. In addition, the targeted Cet-CTS NPs loaded with PTX and QUE inhibited tumor growth in PTX-resistant A549/Taxol cells. Cet-QUE NPs decreased tumor growth in PTX-resistant xenografts. In conclusion, the administration of QUE by using Cet-CTS NPs could provide a prospective strategy for the treatment of PTX-resistant lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.