Abstract

A tumor-penetrating peptide, iRGD (a tumor-homing peptide, CRGDKGPDC), could enhance the penetration of drugs via the specific receptor-binding affinity to αvβ3 and NRP-1 that overexpressed on tumor vasculature and tumor cells. Considering the side effects of traditional chemotherapy, here, poly(ethylene glycol) (PEG, Mw = 7500)-based and iRGD-modified poly(ethylene glycol)-based nanoparticles were successfully prepared. iRGD, as a tumor-targeting and tumor-penetrating agent, was combined with PEG after the esterification reaction between PEG and diosgenin (DGN). After the efficient loading of 10-hydroxycamptothecin (HCPT), the iRGD-PEG-DGN/HCPT NPs of chemotherapy were established. The characteristics of iRGD-PEG-DGN/HCPT NPs were evaluated. This nano-delivery system possessed high drug loading efficiency (∼17.34 wt % HCPT), controlled release rate, good pH response, and iRGD active targeting and passive targeting with an appropriate size (∼140 nm). All these features forcefully indicated that the iRGD-modified drug delivery system could markedly ameliorate the tumor therapy efficacy compared to the nontargeted nanoparticles through enhancing the tumor accumulation and penetration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call