Abstract

The metastasis of breast cancer is the leading cause of cancer death in women. In this work, an attempt to simultaneously inhibit the primary tumor growth and organ-specific metastasis by the cisplatin-loaded LHRH-modified dextran nanoparticles (Dex-SA-CDDP-LHRH) was performed in the 4T1 orthotopic mammary tumor metastasis model. With the rationally designed conjugation site of the LHRH ligand, the Dex-SA-CDDP-LHRH nanoparticles maintained the targeting function of LHRH and specifically bound to the LHRH-receptors overexpressed on the surface of 4T1 breast cancer cells. Therefore, the Dex-SA-CDDP-LHRH nanoparticles exhibited improved cellular uptake and promoted cytotoxicity, when compared with the non-targeted Dex-SA-CDDP nanoparticles. Moreover, both the non-targeted and targeted nanoparticles significantly decreased the systemic toxicity of CDDP and increased the maximum tolerated dose of CDDP from 4 to 30mgkg−1. Importantly, Dex-SA-CDDP-LHRH markedly enhanced the accumulation of CDDP in the injected primary tumor and metastasis-containing organs, and meanwhile significantly reduced the nephrotoxicity of CDDP. Dose-dependent therapeutic effects further demonstrated that the CDDP-loaded LHRH-decorated polysaccharide nanoparticles significantly enhanced the antitumor and antimetastasis efficacy, as compared to the non-targeted nanoparticles. These results suggest that Dex-SA-CDDP-LHRH nanoparticles show great potential for targeted chemotherapy of metastatic breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call