Abstract

The aim of this survey was to load Chrysin (CHY) on solid lipid nanoparticles (SLNs) and decorate the nanoparticles with folate-bound chitosan to increase the effectiveness of the treatment. CHY-SCF-NPs were synthesized by homogenizing and sonication methods and characterized. FA binding and encapsulation efficiency (HPLC), antioxidant capacity (ABTS and DPPH), cell viability assay (MTT), programmed cell death analysis (fluorescence staining, flow cytometry, and qPCR), and angiogenesis (CAM and molecular analysis) assay were done for assessment of therapeutic efficiency of CHY-SCF-NPs. Increases in size and change in surface charge of CHY-SLNs (PS: 84.3 nm and ZP: −18 mV) were reported after coating with folate-bound chitosan (PS: 125 nm and ZP: +34.9 mV). CHY-SCF-NPs inhibited PANC, MCF-7, A2780, and HepG2 as malignant cells and HFF as normal cells with IC50∼53, 55, 249, and >250 µg/mL, respectively. Also, CHY-SCF-NPs scavenged ABTS (IC50: 123.73 µg/mL), and DPPH (IC50: 108.7 µg/mL) free radicals and suppressed angiogenesis in the CAM and qPCR assays. Up-regulation of Bax and caspase 9 genes as well as the fluorescence staining and cell cycle results confirmed the pro-apoptotic properties of CHY-SCF-NPs. CHY-SCF-NPs can be considered a promising anti-cancer candidate for preclinical and clinical studies of pancreatic cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call