Abstract

Photosystem I catalyzes the light-driven oxidation of plastocyanin or cytochrome c6 and the reduction of ferredoxin or flavodoxin. PsaJ is a 4.4 kDa hydrophobic subunit of photosystem I from cyanobacteria and chloroplasts. To investigate the function of PsaJ, we generated a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 in which the psaJ gene is replaced by a gene for chloramphenicol resistance. Deletion of psaJ led to a reduction in the steady state RNA level from psaF which is located upstream from psaJ. Immunoquantification using an anti-PsaF antibody revealed a significant decrease in the amount of PsaF in membranes of the mutant strain. Trimeric photosystem I complexes isolated from the mutant strain using n-dodecyl beta-D-maltoside lacked PsaJ, contained ca. 80% less PsaF, but maintained wild-type levels of other photosystem I subunits. In contrast, the photosystem I purified using Triton X-100 contained less than 2% PsaF when compared to the wild type, showing the more extractable nature of PsaF in PsaJ-less photosystem I in the presence of Triton X-100. PsaE was more accessible to removal by NaI in a mutant strain lacking PsaF and PsaJ than in the wild type. The presence of PsaF in photosystem I from the PsaJ-less strain did not alter the increased susceptibility of PsaE to removal by NaI. These results indicate an interaction between PsaJ and PsaF in the organization of the complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call