Abstract
HYBID (hyaluronan binding protein involved in hyaluronan [HA] depolymerization, KIAA1199/CEMIP) is a key player in HA depolymerization of the skin fibroblasts, arthritic synovial fibroblasts, and brain. Our previous study demonstrated that Hybid knock-out (KO) mice showed spatial memorial impairment, which is accompanied by the accumulation of high molecular weight HA in the hippocampus. However, the mechanism underlying cognitive impairment by Hybid deficiency remains unclear. In the present study, we examined the HA distribution patterns in the brains of wild-type (WT) and Hybid KO mice by HA staining using HA binding protein, and found that in Hybid KO mice, HA is accumulated and doublecortin-positive immature neurons are significantly decreased in the dentate gyrus of the hippocampus, where Hybid mRNA is highly expressed in WT mice. The Golgi-Cox staining demonstrated that the dendritic spine density is significantly decreased in the dentate gyrus granule cells in Hybid KO mice. These results suggest that Hybid-mediated HA degradation is critical for the synaptic formation process by contributing to cognitive functions, such as learning and memory, in the mouse brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.