Abstract

Receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for osteoclast differentiation, and hormones and cytokines that stimulate bone resorption increase RANKL expression in stromal/osteoblastic cells. We have previously shown that PTH and 1,25-dihydroxyvitamin D(3) control murine RANKL gene expression in vitro, in part, via an evolutionarily conserved transcriptional enhancer, designated the distal control region (DCR), located 76 kb upstream from the transcription start site. Herein we describe the phenotype of mice lacking this enhancer. Deletion of the DCR reduced PTH and 1,25-dihydroxyvitamin D(3) stimulation of RANKL mRNA and osteoclast formation in primary bone marrow cultures as well as stimulation of RANKL mRNA in bone. DCR deletion also reduced basal RANKL mRNA levels in bone, thymus, and spleen. Moreover, mice lacking the DCR exhibited increased bone mass and strength. The increase in bone mass was due to reduced osteoclast and osteoblast formation leading to a low rate of bone remodeling similar to that observed in humans and mice with hypoparathyroidism. These findings demonstrate that hormonal control of RANKL expression via the DCR is a critical determinant of the rate of bone remodeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.