Abstract
Arsenic trioxide (ATO) has been found to be an effective treatment for acute promyelocytic leukemia patients and is being tested for treating other hematologic malignancies. We have previously shown that AML1/MDS1/EVI1 (AME), a fusion gene generated by a t(3;21)(q26;q22) translocation found in patients with chronic myelogenous leukemia during blast phase, myelodysplastic syndrome, or acute myelogenous leukemia (AML), impairs hematopoiesis and eventually induces an AML in mice. Both fusion partners of AME, AML1 and MDS1/EVI1, encode transcription factors and are also targets of a variety of genetic abnormalities in human hematologic malignancies. In addition, aberrant expression of ectopic viral integration site 1 (EVI1) has also been found in solid tumors, such as ovarian and colon cancers. In this study, we examined whether ATO could target AME and related oncoproteins. We found that ATO used at therapeutic levels degrades AME. The ATO treatment induces differentiation and apoptosis in AME leukemic cells in vitro as well as reduces tumor load and increases the survival of mice transplanted with these cells. We further found that ATO targets AME via both myelodysplastic syndrome 1 (MDS1) and EVI1 moieties and degrades EVI1 via the ubiquitin-proteasome pathway and MDS1 in a proteasome-independent manner. Our results suggest that ATO could be used as a part of targeted therapy for AME-, AML1/MDS1-, MDS1/EVI1-, and EVI1-positive human cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.