Abstract

Highly preorganized pyrazolate-based dinickel(II) systems are shown to constitute suitable building blocks for the targeted assembly of azido-bridged Ni4 complexes with rectangular arrangement of the metal ions. A set of such complexes has been prepared and structurally characterized. mu-1,1-Azide binding within the bimetallic sub-units is controlled by the chosen topology of the pyrazolate ligand scaffold and gives rise to the anticipated ferromagnetic intradimer coupling. Overall magnetic properties of the Ni4 array, however, are mainly determined by the Ni-NNN-Ni torsion of the interdimer mu-1,3-azido linkages. According to the crystallographic results, these torsion angles vary over a wide range, and partial disorder of the mu-1,3-azide bridge in one of the compounds indicates high structural flexibility even in the solid state. Two of the compounds represent rare examples of molecular complexes with a Ni-NNN-Ni torsion angle of almost exactly 90 degrees . The resulting magnetic ground state (neglecting zero-field splitting) is either S = 0 or S = 4 depending on the Ni-NNN-Ni torsion, and in one case a drastic change is observed upon extrusion of lattice solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.