Abstract

BackgroundCirculating tumor cells (CTCs) can adsorb and activate platelets to form a microthrombus protective barrier around them, so that therapeutic drugs and immune cells cannot effectively kill CTCs. The platelet membrane (PM) bionic carrying drug system has the powerful ability of immune escape, and can circulate in the blood for a long time.Materials and methods: we developed platelet membrane coated nanoparticles (PM HMSNs) to improve the precise delivery of drugs to tumor sites and to achieve more effective immunotherapy combined with chemotherapy strategy. ResultsSuccessfully prepared aPD-L1-PM-SO@HMSNs particles, whose diameter is 95–130 nm and presenting the same surface protein as PM. Laser confocal microscopy and flow cytometry experimental results showed that the fluorescence intensity of aPD-L1-PM-SO@HMSNs was greater than SO@HMSNs that are not coated by PM. Biodistribution studies in H22 tumor-bearing mice showed that due to the combined action of the active targeting effect and the EPR effect, the high accumulation of aPD-L1-PM-SO@HMSNs in the local tumor was more effective in inhibiting tumor growth than other groups of therapeutic agents. ConclusionPlatelet membrane biomimetic nanoparticles have a good targeted therapeutic effect, which can effectively avoid immune clearance and have little side effects. It provides a new direction and theoretical basis for further research on targeted therapy of CTCs in liver cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.