Abstract
A DNA double-strand break (DSB) cannot be tolerated by a cell and is dealt with by several pathways. Here, it was hypothesized that DSB induction close to a targeted mutation in the genome of a mammalian cell might attract oligodeoxynucleotide (ODN)-directed gene repair. A HEK-293-derived cell line had been engineered harboring a single target locus with open reading frames encoding the living-cell reporter proteins LacZ and EGFP, the latter translationally decoupled by a DNA spacer with a unique I-SceI recognition site for defined DSB induction. To enable expression of a fluorescent LacZ–EGFP fusion protein, single-stranded (ss) ODNs (80 or 96 nucleotides long) spanning the DSB were designed to fuse both reading frames by altering a few base-pair positions, deleting 59 bp or introducing a 10-bp fragment. The ssODNs alone generated few EGFP-positive cells. With I-SceI transiently expressed, more than 0.3% of cells revealed EGFP expression 7 days after transfection, with up to 96% of the loci faithfully corrected, depending on the ssODN used. During these correction events, the ssODN did not become physically incorporated into the chromosome, but served only as information template. Unwanted insertional mutagenesis also occurred. Both observations have important implications for gene therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.