Abstract
Loss- and gain-of-function transgenic models are powerful tools for understanding gene function invivo but are limited in their ability to determine relative protein requirements. To determine cell-specific, temporal, or dose requirements of complex pathways, new methodology is needed. This is particularly important for deconstructing metabolic pathways that are highly interdependent and cross-regulated. We have combined mouse conditional transgenics and synthetic posttranslational protein stabilization to produce a broadly applicable strategy to regulate protein and pathway function in a cell-autonomous manner invivo. Here, we show howa targeted chemical-genetic strategy can be used to alter fatty acid metabolism in a reombination and small-molecule-dependent manner in live behaving transgenic mice. This provides a practical, specific, and reversible means of manipulating metabolic pathways in adult mice to provide biological insight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.