Abstract

Cell-cell interactions are essential for multicellular organisms, playing important roles in their development, function, and immunity. Herein a bottom-up strategy to construct self-assembled DNA nanostructures is reported, consisting of multivalent, bispecific, cell-targeting aptamers to specifically induce cell-cell interactions. Various DNA nanoscaffolds are rationally designed to assemble aptamers with different valencies and flexibilities, and their cellular binding capabilities are tested. Multivalent aptamers, assembled on more rigid scaffolds, display higher binding activities. Further, multivalent bispecific aptamer fusion molecules are constructed based on this configuration, and successfully link two types of cells. Using cell-targeting aptamers, the presented strategy eliminates the need to chemically modify cell surfaces and offers excellent cell specificity, binding efficiency, and stability. This proof-of-concept study establishes that multivalent bispecific aptamers linked on DNA-nanoscaffolds can mediate cellular engagement, which could lead to their use in directing or guiding cell-cell interactions in many biological events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.