Abstract

Glioblastoma is a highly aggressive disease with poor patient outcomes despite current treatment options, which consist of surgery, radiation, and chemotherapy. However, these strategies present challenges such as resistance development, damage to healthy tissue, and complications due to the blood-brain barrier. There is therefore a critical need for new treatment modalities that can selectively target tumor cells, minimize resistance development, and improve patient survival. Temozolomide is the current standard chemotherapeutic agent for glioblastoma, yet its use is hindered by drug resistance and severe side effects. Combination therapy using multiple drugs acting synergistically to kill cancer cells and with multiple targets can provide increased efficacy at lower drug concentrations and reduce side effects. In our previous work, we designed a therapeutic peptide (Bac-ELP1-H1) targeting the c-myc oncogene and demonstrated its ability to reduce tumor size, delay neurological deficits, and improve survival in a rat glioblastoma model. In this study, we expanded our research to the U87 glioblastoma cell line and investigated the efficacy of Bac-ELP1-H1/hyperthermia treatment, as well as the combination treatment of temozolomide and Bac-ELP1-H1, in suppressing tumor growth and extending survival in athymic mice. Our experiments revealed that the combination treatment of Bac-ELP1-H1 and temozolomide acted synergistically to enhance survival in mice and was more effective in reducing tumor progression than the single components. Additionally, our study demonstrated the effectiveness of hyperthermia in facilitating the accumulation of the Bac-ELP1-H1 protein at the tumor site. Our findings suggest that the combination of targeted c-myc inhibitory biopolymer with systemic temozolomide therapy may represent a promising alternative treatment option for glioblastoma patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.