Abstract

Targeted delivery of therapeutic agents to prevent smooth muscle cell (SMC) proliferation is important in averting restenosis (a narrowing of blood vessels). Since platelet derived growth factor (PDGF) receptors are over-expressed in proliferating SMCs after injury from cardiovascular interventions, such as angioplasty and stent implantation, our hypothesis is that conjugation of PDGF-BB (platelet-derived growth factor BB (homodimer)) peptides to biodegradable poly (D,L-lactic-co-glycolide) (PLGA) nanoparticles (NPs) would exhibit an increased uptake of these NPs by proliferating SMCs. In this study, poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles containing dexamethasone were formulated and conjugated with PDGF-BB peptides. These NPs were stable, biocompatible, and exhibited a sustained drug release over 14 days. Various particle uptake studies using HASMCs (human aortic smooth muscle cells) demonstrated that PDGF-BB peptide-conjugated nanoparticles significantly increased cellular uptake and decreased proliferation of HASMCs compared to control nanoparticles (without conjugation of PDGF-BB peptides). These NPs were internalized primarily by clathrin-mediated endocytosis and macropinocytosis. Our in vitro results suggest that PDGF-BB peptide-conjugated NPs could represent as an effective targeted, sustained therapeutic delivery system to reduce restenosis and neointimal hyperplasia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call