Abstract

The tumor microenvironment (TME) can severely impair immunotherapy efficacy by repressing the immune system. In a multiple myeloma (MM) murine model, we investigated the impact of targeted alpha particle therapy (TAT) on the immune TME. TAT was combined with an adoptive cell transfer of CD8 T cells (ACT), and the mechanisms of action of this combination were assessed at the tumor site. This combination treatment was conducted in a syngeneic MM murine model grafted subcutaneously. TAT was delivered by intravenous injection of a bismuth-213 radiolabeled anti-CD138 antibody. To strengthen antitumor immune response, TAT was combined with an ACT of tumor-specific CD8+ OT-1 T-cells. The tumors were collected and the immune TME analyzed by flow cytometry, immunohistochemistry, and ex vivo T-cell motility assay on tumor slices. The chemokine and cytokine productions were also assessed by quantitative reverse transcription polymerase chain reaction. Tumor-specific CD8+ OT-1 T cells infiltrated the tumors after ACT. However, only treatment with TAT resulted in regulatory CD4 T-cell drop and transient increased production of interleukin-2, CCL-5, and interferon-γ within the tumor. Moreover, OT-1 T-cell recruitment and motility were increased on tumor slices from TAT-treated mice, as observed via ex vivo time lapse, contributing to a more homogeneous distribution of OT-1 T cells in the tumor. Subsequently, the tumor cells increased PD-L1 expression, antitumor cytokine production decreased, and OT-1 T-cells overexpressed exhaustion markers, suggesting an exhaustion of the immune response. Combining TAT and ACT seems to transiently remodel the cold TME, improving ACT efficiency. The immune response then leads to the establishment of other tumor cell resistance mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call