Abstract
Chromogranin A (CgA), originally identified in adrenal chromaffin cells, is a member of the granin family of acidic secretory glycoproteins that are expressed in endocrine cells and neurons. CgA has been proposed to play multiple roles in the secretory process. Intracellularly, CgA may control secretory granule biogenesis and target neurotransmitters and peptide hormones to granules of the regulated pathway. Extracellularly, peptides formed as a result of proteolytic processing of CgA may regulate hormone secretion. To investigate the role of CgA in the whole animal, we created a mouse mutant null for the Chga gene. These mice are viable and fertile and have no obvious developmental abnormalities, and their neural and endocrine functions are not grossly impaired. Their adrenal glands were structurally unremarkable, and morphometric analyses of chromaffin cells showed vesicle size and number to be normal. However, the excretion of epinephrine, norepinephrine, and dopamine was significantly elevated in the Chga null mutants. Adrenal medullary mRNA and protein levels of other dense-core secretory granule proteins including chromogranin B, and secretogranins II to VI were up-regulated 2- to 3-fold in the Chga null mutant mice. Hence, the increased expression of the other granin family members is likely to compensate for the Chga deficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.