Abstract

Telomerase RNA is an essential component of telomerase, a ribonucleoprotein enzyme that maintains chromosome ends in most eukaryotes. Here we employ a novel approach, namely, RNA-guided RNA modification, to assess whether introducing 2'-O methylation into telomerase RNA can influence telomerase activity in vivo. We generate specific 2'-O methylation sites in and adjacent to the triple helix (within the conserved pseudoknot structure) of Saccharomyces cerevisiae telomerase RNA (TLC1). We show that 2'-O methylation at U809 reduces telomerase activity, resulting in telomere shortening, whereas 2'-O methylation at A804 or A805 leads to moderate telomere lengthening. Importantly, we also show that targeted 2'-O methylation does not affect TLC1 levels and that 2'-O-methylated TLC1 appears to be efficiently assembled into telomerase ribonucleoprotein. Our results demonstrate that RNA-guided RNA modification is a highly useful approach for modulating telomerase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call