Abstract

Rotational resonance width (R(2)W) magic-angle spinning (MAS) NMR experiments are performed to measure (13)C-(13)C distances in the hydrophobic core of the microcrystalline model protein G(Beta1). Such inter-residue distances are of particular value in NMR structure determinations. The experiments are done at a Larmor frequency of 750 MHz (1)H where the contribution of (13)C chemical shift anisotropy (CSA) to the R(2) transfer mechanism is significant. To minimize line broadening in the 2D spectra, we employ a combination of even/odd isotopic labeling with [1,3-(13)C] glycerol, and J-decoupling in the indirect dimension. This results in high-precision distance measurements between aromatic side chains of three tyrosine residues and distant methyl groups in the hydrophobic core of the protein. Even in the absence of information on the relative orientation of the shift tensors, we obtain relatively high precision data, which can be further improved by additional constraints on the tensor orientations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.