Abstract

This paper studies the target tracking control strategy of a snake robot and proposes an adaptive sliding mode control method. The strategy ensures the robot follows the target path by controlling the joint angle through feedback, pushing the robot to reach the target position through gait function. In order to achieve target tracking, a kinematic model of a snake robot was first established in this paper. Then, we used double-sine serpentine gait to solve the problem of low steering efficiency caused by regular serpentine gait, and we explored the relationship between control parameters and robot steering. On the basis of gait, in order to further improve the efficiency of target tracking for the snake robot, an adaptive sliding mode control method, based on a new sliding mode reaching law, was proposed. Finally, the effectiveness and practicability of the proposed strategy was demonstrated by comparative analysis and simulation experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.