Abstract

This paper represents a new multiple sensor information fusion algorithm in distributed sensor networks using an additive divided difference information filter for nonlinear estimation and tracking applications. The newly proposed multi-sensor fusion algorithm is derived by utilizing an efficient new additive divided difference filtering algorithm with embedding statistical error propagation method into an information filtering architecture. The new additive divided difference information filter achieves not only the accurate nonlinear estimation solution, but also the flexibility of multiple information fusion in distributed sensor networks. Performance comparison of the proposed filter with the nonlinear information filters is demonstrated through a target-tracking application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call