Abstract

Aiming at the phenomenon that the target particle tracking algorithm is affected by illumination changes and occlusion in the target tracking process, the goal is lost. A target tracking algorithm based on convolutional neural network and particle filtering is proposed. The algorithm uses the convolutional neural network to automatically learn the depth features of the target, and extracts the more abstract semantic information of the target. The semantic information makes the algorithm robust to the apparent changes of the target, which can alleviate the drift problem to some extent. The algorithm can effectively combine the target apparent model based on convolutional neural network with the particle filter framework. The experimental results show that compared with the other five algorithms in the particle filter framework, the algorithm can track the moving targets with partial occlusion and morphological changes more robustly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.